

The NLF1 and NLF2 Series provide a flip-flop latching function. Each time the control switch is closed, the solid-state output changes state and latches. The NLF Series has no isolation between the control switch and the solid-state output, which lowers cost and reduces the number of connections required. For use where the control switch is the same voltage source as the load. Zero voltage switching NLF2 extends the life of an incandescent lamp by up to 10 times. Random switching NLF1 is ideal for inductive loads. When accessory fully insulated female terminals are used on the connection wires, the system meets the requirements for touch-proof connections.

For more information see:

Appendix B, page 165, Figure 4 for dimensional drawing. Appendix C, page 172, Figure 39 for connection diagram.

Operation

The solid-state output is located between terminals 1 and 2 , and can be ordered as either normally open or normally closed, when voltage is applied. When S1 is closed, the solid-state output between terminals 1 and 2 closes (or opens). If S1 is opened and reclosed, the solid-state output will open (or close).
Reset: Open and reclose S1. Reset is also accomplished by removing and reapplying input voltage.

Available Models:

NLF126A
NLF141A
NLF1620A
If desired part number is not listed, please call us to see if it is technically possible to build.

Features:
 eatures.

- Totally solid-state latching relay encapsulated
- Non-isolated to reduce cost
-1-20A with 200A inrush
- 24,120 , or 230 VAC input voltages
- NLF1 - Random switching for inductive loads
- NLF2 - Zero voltage switching for lamp \& resistive loads

Auxiliary Products:

- Quick connect to screw adaptor: P/N: P1015-18
- Female quick connect:

P/N: P1015-13 (AWG 10/12)
P/N: P1015-64 (AWG 14/16)
P/N: P1015-14 (AWG 18/22)

Order Table:

$\underset{\text { Series }}{\text { X }}$

X
Input
-2-24VAC
-4 - 120VAC
-6-230VAC

X	X
Output Rating	Output Form $-1-1 A$
$-6-6 A$	A - Normally Open
$-10-10 \mathrm{~A}$	B - Normally Closed
$-20-20 \mathrm{~A}$	

Function:

$V=$ Voltage
S1 = Initiate Switch
$\mathrm{R}=$ Reset
NO = Normally Open Output
NC = Normally Closed Output
— = Undefined time

Specifications

Output			
Type.	. Non-isolated solid state		
Form.	. SPST, NO or NC		
Ratings.	Steady State	Inrush*	Output Device
	1A	10A	SCR \& Bridge Rectifier
	6A	60A	Triac
	10A	100A	Triac
	20A	200A	Triac
Minimum Load Current. 50mA			
Voltage Drop (at Rated Current) $\ldots \ldots .02 .0 \mathrm{~V}-6,10, \& 20 \mathrm{~A}$ units; $\cong 2.5 \mathrm{~V}-1 \mathrm{~A}$ unitsLeakage Current (Open State) $\ldots \ldots . . \leq 5 \mathrm{~mA}$			
Input			
Type............................. . Non-isolated, switch contact (customer supplied)			
Voltage. 24,120 , or $230 \mathrm{VAC} \pm 20 \%$			
Power Consumption............... $\leq 0.5 \mathrm{~W}$			
Operations Per Second	≤ 5		

Protection	
Circuitry	Encapsulated
Dielectric Breakdown	$\geq 2000 \mathrm{~V}$ RMS terminals to mounting surface
Insulation Resistance.	$\geq 100 \mathrm{M} \Omega$
Mechanical	
Mounting*	Surface mount with one \#10 (M5 x 0.8) screw
Dimensions 6, 10, 20A units	$2 \times 2 \times 1.51 \mathrm{in}$. ($50.8 \times 50.8 \times 38.4 \mathrm{~mm}$)
1A units	$2 \times 2 \times 1.21 \mathrm{in}$. ($50.8 \times 50.8 \times 30.7 \mathrm{~mm}$)
Termination	0.25 in . (6.35 mm) male quick connect terminals
Environmental	
Operating / Storage Temperature	-20° to $60^{\circ} \mathrm{C} /-40^{\circ}$ to $85^{\circ} \mathrm{C}$
Humidity....................	.95\% relative, non-condensing
Weight.	1A units: $\cong 2.4$ oz (68 g);
	$6,10,20 \mathrm{~A}$ units: $\cong 3.9 \mathrm{oz}(111 \mathrm{~g})$

[^0] The maximum mounting surface temperature is $90^{\circ} \mathrm{C}$. Inrush: Non-repetitive for 16 ms .

FIGURE 1

CT; ESD5; ESDR; FS100; FS200; FS300; KRD3; KRD9; KRDB; KRDI; KRDM; KRDR; KRDS; KRPD; KRPS; KSD1; KSD2; KSD3; KSD4; KSDB; KSDR; KSDS;
KSDU; KSPD; KSPS; KSPU; KVM; T2D; TA; TAC1; TAC4; TDU; TDUB; TDUI; TDUS; TL; TMV8000; TS1; TS2; TS4; TS6; TSB; TSD1; TSD2; TSD3; TSD4; TSD6; TSD7; TSDB; TSDR; TSDS; TSS; TSU2000

FIGURE 4

0.25 (6.35) DIA.
. $\quad 0.25$ (6.35)
FA; FS; FSU1000*; NHPD; NHPS; NHPU;
NLF1*; NLF2*; PHS*; PTHF*; SIR1; SIR2;
SLR1*; SLR2*; TH1; TH2; THC; THD1;
THD2; THD3; THD4; THD7; THDB; THDM; THDS; THS
*If unit is rated @ 1A, see Figure 1
FIGURE 7

≤ 14 AWG $\left(2.45 \mathrm{~mm}^{2}\right)$
ASQU; ASTU; DSQU; DSTU
FIGURE 10

FIGURE 5

TRDU

FIGURE 2

HLV; HRD3; HRD9; HRDB; HRDI; HRDM; HRDR; HRDS; HRID; HRIS; HRIU; HRPD; HRPS; HRPU; HRV; RS

FIGURE 3

HSPZ

FIGURE 6

TRU

FIGURE 8

PLM; PLR; TDB; TDBH; TDBL; TDI; TDIH;
TDIL; TDM; TDMB; TDMH; TDML; TDR; TDS; TDSH; TDSL

FIGURE 11

ORB; ORM; ORS

FIGURE 9

FS500; PRLB; PRLM; PRLS; TRB; TRM; TRS

FIGURE 12

FS100; FS400

Appendix C - Connection Diagrams

FIGURE 34 - FB9L

B = LED Beacon
SS = Selector Switch
SI = Sensor Input
$\mathrm{L}=$ Indicator
F = Flasher Failure LED
AXL = Auxiliary Load/Alarm
FF = Flasher Failure/Bypass Relay BRC $=$ Bypass Relay Contacts

FIGURE 35 - SCR9L

FIGURE 37 - SIR1/SIR2 Series

* Customer Supplied Jumper ---. Internal Connection

FIGURE 38- SLR Series

S1 = Initiate Switch
Note: Normally open output is shown. Normally closed output is also available.

FIGURE 39 - NLF1/NLF2 Series

L= Load
S1 = Control Switch
Internal connections between terminals $2 \& 4$.

FIGURE 40 - PHS Series

Triac Output Device
$\mathrm{V}=$ Voltage
L = Load
$\mathrm{R}_{\mathrm{T}}=$ External Adjustment

[^0]: *Units rated $\geq 6 \mathrm{~A}$ must be bolted to a metal surface using the included heat sink compound.

